Recent Advances in Graphene-Based Free-Standing Films for Thermal Management: Synthesis, Properties, and Applications
نویسندگان
چکیده
Thermal management in microelectronic devices has become a crucial issue as the devices are more and more integrated into micro-devices. Recently, free-standing graphene films (GFs) with outstanding thermal conductivity, superb mechanical strength, and low bulk density, have been regarded as promising materials for heat dissipation and for use as thermal interfacial materials in microelectronic devices. Recent studies on free-standing GFs obtained via various approaches are reviewed here. Special attention is paid to their synthesis method, thermal conductivity, and potential applications. In addition, the most important factors that affect the thermal conductivity are outlined and discussed. The scope is to provide a clear overview that researchers can adopt when fabricating GFs with improved thermal conductivity and a large area for industrial applications.
منابع مشابه
Thermal properties of graphene-copper-graphene heterogeneous films.
We demonstrated experimentally that graphene-Cu-graphene heterogeneous films reveal strongly enhanced thermal conductivity as compared to the reference Cu and annealed Cu films. Chemical vapor deposition of a single atomic plane of graphene on both sides of 9 μm thick Cu films increases their thermal conductivity by up to 24% near room temperature. Interestingly, the observed improvement of the...
متن کاملControllable fabrication of ultrathin free-standing graphene films.
Graphene free-standing film-like or paper-like materials have attracted great attention due to their intriguing electronic, optical and mechanical properties and potential application in chemical filters, molecular storage and supercapacitors. Although significant progress has been made in fabricating graphene films or paper, there is still no effective method targeting ultrathin free-standing ...
متن کاملCost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors
In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...
متن کاملSynthesis and structural properties of Mn-doped ZnO/Graphene nanocomposite
Zinc oxide (ZnO) is a promising metal oxide semiconductor with various applications, especially in the photocatalytic destruction of environmental pollutants. However, this nanoparticle has some limitations, such as poor dispersion, aggregation, and a wide energy gap. As such, the doping of metal oxide semiconductor has been strongly recommended. Addition of manganese (Mn) has proven effective ...
متن کاملSynthesis and Characterization of Graphene-ZnO Nanocomposite and its Application in Photovoltaic Cells
In this paper, we present a simple method for preparation of graphene-ZnO nanocomposites (G-ZnO). The method is based on thermal treatment of the graphene oxide (GO)/ZnO paste which reduces the graphene oxide into the graphene and leads to the formation of the G-ZnO nanocomposite. The structure, morphology and optical properties of synthesized nanocomposites are characterized with XRD, FESEM, F...
متن کامل